3.653 \(\int \frac{(a+b x)^{5/2} \sqrt{c+d x}}{x^4} \, dx\)

Optimal. Leaf size=228 \[ -\frac{\left (-5 a^2 b c d^2+a^3 d^3+15 a b^2 c^2 d+5 b^3 c^3\right ) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x}}{\sqrt{a} \sqrt{c+d x}}\right )}{8 \sqrt{a} c^{5/2}}+2 b^{5/2} \sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )-\frac{\sqrt{a+b x} \sqrt{c+d x} (5 b c-a d) (a d+b c)}{8 c^2 x}-\frac{(a+b x)^{5/2} \sqrt{c+d x}}{3 x^3}-\frac{(a+b x)^{3/2} \sqrt{c+d x} (a d+5 b c)}{12 c x^2} \]

[Out]

-((5*b*c - a*d)*(b*c + a*d)*Sqrt[a + b*x]*Sqrt[c + d*x])/(8*c^2*x) - ((5*b*c + a*d)*(a + b*x)^(3/2)*Sqrt[c + d
*x])/(12*c*x^2) - ((a + b*x)^(5/2)*Sqrt[c + d*x])/(3*x^3) - ((5*b^3*c^3 + 15*a*b^2*c^2*d - 5*a^2*b*c*d^2 + a^3
*d^3)*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(Sqrt[a]*Sqrt[c + d*x])])/(8*Sqrt[a]*c^(5/2)) + 2*b^(5/2)*Sqrt[d]*ArcTan
h[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])]

________________________________________________________________________________________

Rubi [A]  time = 0.186812, antiderivative size = 228, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 8, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.364, Rules used = {97, 149, 157, 63, 217, 206, 93, 208} \[ -\frac{\left (-5 a^2 b c d^2+a^3 d^3+15 a b^2 c^2 d+5 b^3 c^3\right ) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x}}{\sqrt{a} \sqrt{c+d x}}\right )}{8 \sqrt{a} c^{5/2}}+2 b^{5/2} \sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )-\frac{\sqrt{a+b x} \sqrt{c+d x} (5 b c-a d) (a d+b c)}{8 c^2 x}-\frac{(a+b x)^{5/2} \sqrt{c+d x}}{3 x^3}-\frac{(a+b x)^{3/2} \sqrt{c+d x} (a d+5 b c)}{12 c x^2} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*x)^(5/2)*Sqrt[c + d*x])/x^4,x]

[Out]

-((5*b*c - a*d)*(b*c + a*d)*Sqrt[a + b*x]*Sqrt[c + d*x])/(8*c^2*x) - ((5*b*c + a*d)*(a + b*x)^(3/2)*Sqrt[c + d
*x])/(12*c*x^2) - ((a + b*x)^(5/2)*Sqrt[c + d*x])/(3*x^3) - ((5*b^3*c^3 + 15*a*b^2*c^2*d - 5*a^2*b*c*d^2 + a^3
*d^3)*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(Sqrt[a]*Sqrt[c + d*x])])/(8*Sqrt[a]*c^(5/2)) + 2*b^(5/2)*Sqrt[d]*ArcTan
h[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])]

Rule 97

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p)/(b*(m + 1)), x] - Dist[1/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n
- 1)*(e + f*x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[m
, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])

Rule 149

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] - Dist[1
/(b*(b*e - a*f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b*c*(f*g - e*h)*(m + 1) + (
b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; Free
Q[{a, b, c, d, e, f, g, h, p}, x] && LtQ[m, -1] && GtQ[n, 0] && IntegerQ[m]

Rule 157

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[((c + d*x)^n*(e + f*x)^p)/(a + b*x
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{(a+b x)^{5/2} \sqrt{c+d x}}{x^4} \, dx &=-\frac{(a+b x)^{5/2} \sqrt{c+d x}}{3 x^3}+\frac{1}{3} \int \frac{(a+b x)^{3/2} \left (\frac{1}{2} (5 b c+a d)+3 b d x\right )}{x^3 \sqrt{c+d x}} \, dx\\ &=-\frac{(5 b c+a d) (a+b x)^{3/2} \sqrt{c+d x}}{12 c x^2}-\frac{(a+b x)^{5/2} \sqrt{c+d x}}{3 x^3}+\frac{\int \frac{\sqrt{a+b x} \left (\frac{3}{4} (5 b c-a d) (b c+a d)+6 b^2 c d x\right )}{x^2 \sqrt{c+d x}} \, dx}{6 c}\\ &=-\frac{(5 b c-a d) (b c+a d) \sqrt{a+b x} \sqrt{c+d x}}{8 c^2 x}-\frac{(5 b c+a d) (a+b x)^{3/2} \sqrt{c+d x}}{12 c x^2}-\frac{(a+b x)^{5/2} \sqrt{c+d x}}{3 x^3}+\frac{\int \frac{\frac{3}{8} \left (5 b^3 c^3+15 a b^2 c^2 d-5 a^2 b c d^2+a^3 d^3\right )+6 b^3 c^2 d x}{x \sqrt{a+b x} \sqrt{c+d x}} \, dx}{6 c^2}\\ &=-\frac{(5 b c-a d) (b c+a d) \sqrt{a+b x} \sqrt{c+d x}}{8 c^2 x}-\frac{(5 b c+a d) (a+b x)^{3/2} \sqrt{c+d x}}{12 c x^2}-\frac{(a+b x)^{5/2} \sqrt{c+d x}}{3 x^3}+\left (b^3 d\right ) \int \frac{1}{\sqrt{a+b x} \sqrt{c+d x}} \, dx+\frac{\left (5 b^3 c^3+15 a b^2 c^2 d-5 a^2 b c d^2+a^3 d^3\right ) \int \frac{1}{x \sqrt{a+b x} \sqrt{c+d x}} \, dx}{16 c^2}\\ &=-\frac{(5 b c-a d) (b c+a d) \sqrt{a+b x} \sqrt{c+d x}}{8 c^2 x}-\frac{(5 b c+a d) (a+b x)^{3/2} \sqrt{c+d x}}{12 c x^2}-\frac{(a+b x)^{5/2} \sqrt{c+d x}}{3 x^3}+\left (2 b^2 d\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{c-\frac{a d}{b}+\frac{d x^2}{b}}} \, dx,x,\sqrt{a+b x}\right )+\frac{\left (5 b^3 c^3+15 a b^2 c^2 d-5 a^2 b c d^2+a^3 d^3\right ) \operatorname{Subst}\left (\int \frac{1}{-a+c x^2} \, dx,x,\frac{\sqrt{a+b x}}{\sqrt{c+d x}}\right )}{8 c^2}\\ &=-\frac{(5 b c-a d) (b c+a d) \sqrt{a+b x} \sqrt{c+d x}}{8 c^2 x}-\frac{(5 b c+a d) (a+b x)^{3/2} \sqrt{c+d x}}{12 c x^2}-\frac{(a+b x)^{5/2} \sqrt{c+d x}}{3 x^3}-\frac{\left (5 b^3 c^3+15 a b^2 c^2 d-5 a^2 b c d^2+a^3 d^3\right ) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x}}{\sqrt{a} \sqrt{c+d x}}\right )}{8 \sqrt{a} c^{5/2}}+\left (2 b^2 d\right ) \operatorname{Subst}\left (\int \frac{1}{1-\frac{d x^2}{b}} \, dx,x,\frac{\sqrt{a+b x}}{\sqrt{c+d x}}\right )\\ &=-\frac{(5 b c-a d) (b c+a d) \sqrt{a+b x} \sqrt{c+d x}}{8 c^2 x}-\frac{(5 b c+a d) (a+b x)^{3/2} \sqrt{c+d x}}{12 c x^2}-\frac{(a+b x)^{5/2} \sqrt{c+d x}}{3 x^3}-\frac{\left (5 b^3 c^3+15 a b^2 c^2 d-5 a^2 b c d^2+a^3 d^3\right ) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x}}{\sqrt{a} \sqrt{c+d x}}\right )}{8 \sqrt{a} c^{5/2}}+2 b^{5/2} \sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )\\ \end{align*}

Mathematica [A]  time = 2.05369, size = 235, normalized size = 1.03 \[ -\frac{\sqrt{a+b x} \sqrt{c+d x} \left (a^2 \left (8 c^2+2 c d x-3 d^2 x^2\right )+2 a b c x (13 c+7 d x)+33 b^2 c^2 x^2\right )}{24 c^2 x^3}-\frac{\left (-5 a^2 b c d^2+a^3 d^3+15 a b^2 c^2 d+5 b^3 c^3\right ) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x}}{\sqrt{a} \sqrt{c+d x}}\right )}{8 \sqrt{a} c^{5/2}}+\frac{2 \sqrt{d} (b c-a d)^{5/2} \left (\frac{b (c+d x)}{b c-a d}\right )^{5/2} \sinh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b c-a d}}\right )}{(c+d x)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*x)^(5/2)*Sqrt[c + d*x])/x^4,x]

[Out]

-(Sqrt[a + b*x]*Sqrt[c + d*x]*(33*b^2*c^2*x^2 + 2*a*b*c*x*(13*c + 7*d*x) + a^2*(8*c^2 + 2*c*d*x - 3*d^2*x^2)))
/(24*c^2*x^3) + (2*Sqrt[d]*(b*c - a*d)^(5/2)*((b*(c + d*x))/(b*c - a*d))^(5/2)*ArcSinh[(Sqrt[d]*Sqrt[a + b*x])
/Sqrt[b*c - a*d]])/(c + d*x)^(5/2) - ((5*b^3*c^3 + 15*a*b^2*c^2*d - 5*a^2*b*c*d^2 + a^3*d^3)*ArcTanh[(Sqrt[c]*
Sqrt[a + b*x])/(Sqrt[a]*Sqrt[c + d*x])])/(8*Sqrt[a]*c^(5/2))

________________________________________________________________________________________

Maple [B]  time = 0.015, size = 601, normalized size = 2.6 \begin{align*}{\frac{1}{48\,{c}^{2}{x}^{3}}\sqrt{bx+a}\sqrt{dx+c} \left ( 48\,\ln \left ( 1/2\,{\frac{2\,bdx+2\,\sqrt{d{x}^{2}b+adx+bcx+ac}\sqrt{bd}+ad+bc}{\sqrt{bd}}} \right ){x}^{3}{b}^{3}{c}^{2}d\sqrt{ac}-3\,\ln \left ({\frac{adx+bcx+2\,\sqrt{ac}\sqrt{d{x}^{2}b+adx+bcx+ac}+2\,ac}{x}} \right ){x}^{3}{a}^{3}{d}^{3}\sqrt{bd}+15\,\ln \left ({\frac{adx+bcx+2\,\sqrt{ac}\sqrt{d{x}^{2}b+adx+bcx+ac}+2\,ac}{x}} \right ){x}^{3}{a}^{2}bc{d}^{2}\sqrt{bd}-45\,\ln \left ({\frac{adx+bcx+2\,\sqrt{ac}\sqrt{d{x}^{2}b+adx+bcx+ac}+2\,ac}{x}} \right ){x}^{3}a{b}^{2}{c}^{2}d\sqrt{bd}-15\,\ln \left ({\frac{adx+bcx+2\,\sqrt{ac}\sqrt{d{x}^{2}b+adx+bcx+ac}+2\,ac}{x}} \right ){x}^{3}{b}^{3}{c}^{3}\sqrt{bd}+6\,\sqrt{d{x}^{2}b+adx+bcx+ac}\sqrt{bd}\sqrt{ac}{x}^{2}{a}^{2}{d}^{2}-28\,\sqrt{d{x}^{2}b+adx+bcx+ac}\sqrt{bd}\sqrt{ac}{x}^{2}abcd-66\,\sqrt{d{x}^{2}b+adx+bcx+ac}\sqrt{bd}\sqrt{ac}{x}^{2}{b}^{2}{c}^{2}-4\,\sqrt{d{x}^{2}b+adx+bcx+ac}\sqrt{bd}\sqrt{ac}x{a}^{2}cd-52\,\sqrt{d{x}^{2}b+adx+bcx+ac}\sqrt{bd}\sqrt{ac}xab{c}^{2}-16\,\sqrt{d{x}^{2}b+adx+bcx+ac}\sqrt{bd}\sqrt{ac}{a}^{2}{c}^{2} \right ){\frac{1}{\sqrt{d{x}^{2}b+adx+bcx+ac}}}{\frac{1}{\sqrt{bd}}}{\frac{1}{\sqrt{ac}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^(5/2)*(d*x+c)^(1/2)/x^4,x)

[Out]

1/48*(b*x+a)^(1/2)*(d*x+c)^(1/2)/c^2*(48*ln(1/2*(2*b*d*x+2*(b*d*x^2+a*d*x+b*c*x+a*c)^(1/2)*(b*d)^(1/2)+a*d+b*c
)/(b*d)^(1/2))*x^3*b^3*c^2*d*(a*c)^(1/2)-3*ln((a*d*x+b*c*x+2*(a*c)^(1/2)*(b*d*x^2+a*d*x+b*c*x+a*c)^(1/2)+2*a*c
)/x)*x^3*a^3*d^3*(b*d)^(1/2)+15*ln((a*d*x+b*c*x+2*(a*c)^(1/2)*(b*d*x^2+a*d*x+b*c*x+a*c)^(1/2)+2*a*c)/x)*x^3*a^
2*b*c*d^2*(b*d)^(1/2)-45*ln((a*d*x+b*c*x+2*(a*c)^(1/2)*(b*d*x^2+a*d*x+b*c*x+a*c)^(1/2)+2*a*c)/x)*x^3*a*b^2*c^2
*d*(b*d)^(1/2)-15*ln((a*d*x+b*c*x+2*(a*c)^(1/2)*(b*d*x^2+a*d*x+b*c*x+a*c)^(1/2)+2*a*c)/x)*x^3*b^3*c^3*(b*d)^(1
/2)+6*(b*d*x^2+a*d*x+b*c*x+a*c)^(1/2)*(b*d)^(1/2)*(a*c)^(1/2)*x^2*a^2*d^2-28*(b*d*x^2+a*d*x+b*c*x+a*c)^(1/2)*(
b*d)^(1/2)*(a*c)^(1/2)*x^2*a*b*c*d-66*(b*d*x^2+a*d*x+b*c*x+a*c)^(1/2)*(b*d)^(1/2)*(a*c)^(1/2)*x^2*b^2*c^2-4*(b
*d*x^2+a*d*x+b*c*x+a*c)^(1/2)*(b*d)^(1/2)*(a*c)^(1/2)*x*a^2*c*d-52*(b*d*x^2+a*d*x+b*c*x+a*c)^(1/2)*(b*d)^(1/2)
*(a*c)^(1/2)*x*a*b*c^2-16*(b*d*x^2+a*d*x+b*c*x+a*c)^(1/2)*(b*d)^(1/2)*(a*c)^(1/2)*a^2*c^2)/(b*d*x^2+a*d*x+b*c*
x+a*c)^(1/2)/x^3/(b*d)^(1/2)/(a*c)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(5/2)*(d*x+c)^(1/2)/x^4,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 22.0482, size = 2811, normalized size = 12.33 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(5/2)*(d*x+c)^(1/2)/x^4,x, algorithm="fricas")

[Out]

[1/96*(48*sqrt(b*d)*a*b^2*c^3*x^3*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2*b*d*x + b*c + a*d)*
sqrt(b*d)*sqrt(b*x + a)*sqrt(d*x + c) + 8*(b^2*c*d + a*b*d^2)*x) + 3*(5*b^3*c^3 + 15*a*b^2*c^2*d - 5*a^2*b*c*d
^2 + a^3*d^3)*sqrt(a*c)*x^3*log((8*a^2*c^2 + (b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^2 - 4*(2*a*c + (b*c + a*d)*x)*s
qrt(a*c)*sqrt(b*x + a)*sqrt(d*x + c) + 8*(a*b*c^2 + a^2*c*d)*x)/x^2) - 4*(8*a^3*c^3 + (33*a*b^2*c^3 + 14*a^2*b
*c^2*d - 3*a^3*c*d^2)*x^2 + 2*(13*a^2*b*c^3 + a^3*c^2*d)*x)*sqrt(b*x + a)*sqrt(d*x + c))/(a*c^3*x^3), -1/96*(9
6*sqrt(-b*d)*a*b^2*c^3*x^3*arctan(1/2*(2*b*d*x + b*c + a*d)*sqrt(-b*d)*sqrt(b*x + a)*sqrt(d*x + c)/(b^2*d^2*x^
2 + a*b*c*d + (b^2*c*d + a*b*d^2)*x)) - 3*(5*b^3*c^3 + 15*a*b^2*c^2*d - 5*a^2*b*c*d^2 + a^3*d^3)*sqrt(a*c)*x^3
*log((8*a^2*c^2 + (b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^2 - 4*(2*a*c + (b*c + a*d)*x)*sqrt(a*c)*sqrt(b*x + a)*sqrt
(d*x + c) + 8*(a*b*c^2 + a^2*c*d)*x)/x^2) + 4*(8*a^3*c^3 + (33*a*b^2*c^3 + 14*a^2*b*c^2*d - 3*a^3*c*d^2)*x^2 +
 2*(13*a^2*b*c^3 + a^3*c^2*d)*x)*sqrt(b*x + a)*sqrt(d*x + c))/(a*c^3*x^3), 1/48*(24*sqrt(b*d)*a*b^2*c^3*x^3*lo
g(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2*b*d*x + b*c + a*d)*sqrt(b*d)*sqrt(b*x + a)*sqrt(d*x + c
) + 8*(b^2*c*d + a*b*d^2)*x) + 3*(5*b^3*c^3 + 15*a*b^2*c^2*d - 5*a^2*b*c*d^2 + a^3*d^3)*sqrt(-a*c)*x^3*arctan(
1/2*(2*a*c + (b*c + a*d)*x)*sqrt(-a*c)*sqrt(b*x + a)*sqrt(d*x + c)/(a*b*c*d*x^2 + a^2*c^2 + (a*b*c^2 + a^2*c*d
)*x)) - 2*(8*a^3*c^3 + (33*a*b^2*c^3 + 14*a^2*b*c^2*d - 3*a^3*c*d^2)*x^2 + 2*(13*a^2*b*c^3 + a^3*c^2*d)*x)*sqr
t(b*x + a)*sqrt(d*x + c))/(a*c^3*x^3), -1/48*(48*sqrt(-b*d)*a*b^2*c^3*x^3*arctan(1/2*(2*b*d*x + b*c + a*d)*sqr
t(-b*d)*sqrt(b*x + a)*sqrt(d*x + c)/(b^2*d^2*x^2 + a*b*c*d + (b^2*c*d + a*b*d^2)*x)) - 3*(5*b^3*c^3 + 15*a*b^2
*c^2*d - 5*a^2*b*c*d^2 + a^3*d^3)*sqrt(-a*c)*x^3*arctan(1/2*(2*a*c + (b*c + a*d)*x)*sqrt(-a*c)*sqrt(b*x + a)*s
qrt(d*x + c)/(a*b*c*d*x^2 + a^2*c^2 + (a*b*c^2 + a^2*c*d)*x)) + 2*(8*a^3*c^3 + (33*a*b^2*c^3 + 14*a^2*b*c^2*d
- 3*a^3*c*d^2)*x^2 + 2*(13*a^2*b*c^3 + a^3*c^2*d)*x)*sqrt(b*x + a)*sqrt(d*x + c))/(a*c^3*x^3)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**(5/2)*(d*x+c)**(1/2)/x**4,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 44.7666, size = 3058, normalized size = 13.41 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(5/2)*(d*x+c)^(1/2)/x^4,x, algorithm="giac")

[Out]

-1/24*(24*sqrt(b*d)*b^2*abs(b)*log((sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2) + 3*(5*s
qrt(b*d)*b^4*c^3*abs(b) + 15*sqrt(b*d)*a*b^3*c^2*d*abs(b) - 5*sqrt(b*d)*a^2*b^2*c*d^2*abs(b) + sqrt(b*d)*a^3*b
*d^3*abs(b))*arctan(-1/2*(b^2*c + a*b*d - (sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2)/(
sqrt(-a*b*c*d)*b))/(sqrt(-a*b*c*d)*b*c^2) + 2*(33*sqrt(b*d)*b^14*c^8*abs(b) - 184*sqrt(b*d)*a*b^13*c^7*d*abs(b
) + 408*sqrt(b*d)*a^2*b^12*c^6*d^2*abs(b) - 432*sqrt(b*d)*a^3*b^11*c^5*d^3*abs(b) + 170*sqrt(b*d)*a^4*b^10*c^4
*d^4*abs(b) + 72*sqrt(b*d)*a^5*b^9*c^3*d^5*abs(b) - 96*sqrt(b*d)*a^6*b^8*c^2*d^6*abs(b) + 32*sqrt(b*d)*a^7*b^7
*c*d^7*abs(b) - 3*sqrt(b*d)*a^8*b^6*d^8*abs(b) - 165*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x +
a)*b*d - a*b*d))^2*b^12*c^7*abs(b) + 477*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b
*d))^2*a*b^11*c^6*d*abs(b) - 309*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a
^2*b^10*c^5*d^2*abs(b) - 219*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a^3*b
^9*c^4*d^3*abs(b) + 201*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a^4*b^8*c^
3*d^4*abs(b) + 111*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a^5*b^7*c^2*d^5
*abs(b) - 111*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a^6*b^6*c*d^6*abs(b)
 + 15*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a^7*b^5*d^7*abs(b) + 330*sqr
t(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^4*b^10*c^6*abs(b) - 228*sqrt(b*d)*(sqrt
(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^4*a*b^9*c^5*d*abs(b) - 114*sqrt(b*d)*(sqrt(b*d)*sqr
t(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^4*a^2*b^8*c^4*d^2*abs(b) - 312*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x
 + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^4*a^3*b^7*c^3*d^3*abs(b) + 198*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a)
 - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^4*a^4*b^6*c^2*d^4*abs(b) + 156*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sq
rt(b^2*c + (b*x + a)*b*d - a*b*d))^4*a^5*b^5*c*d^5*abs(b) - 30*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c
 + (b*x + a)*b*d - a*b*d))^4*a^6*b^4*d^6*abs(b) - 330*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x +
 a)*b*d - a*b*d))^6*b^8*c^5*abs(b) - 338*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b
*d))^6*a*b^7*c^4*d*abs(b) - 252*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^6*a^
2*b^6*c^3*d^2*abs(b) - 396*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^6*a^3*b^5
*c^2*d^3*abs(b) - 122*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^6*a^4*b^4*c*d^
4*abs(b) + 30*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^6*a^5*b^3*d^5*abs(b) +
 165*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^8*b^6*c^4*abs(b) + 372*sqrt(b*d
)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^8*a*b^5*c^3*d*abs(b) + 282*sqrt(b*d)*(sqrt(b
*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^8*a^2*b^4*c^2*d^2*abs(b) + 60*sqrt(b*d)*(sqrt(b*d)*sq
rt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^8*a^3*b^3*c*d^3*abs(b) - 15*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x +
 a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^8*a^4*b^2*d^4*abs(b) - 33*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt
(b^2*c + (b*x + a)*b*d - a*b*d))^10*b^4*c^3*abs(b) - 99*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x
 + a)*b*d - a*b*d))^10*a*b^3*c^2*d*abs(b) - 15*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d
 - a*b*d))^10*a^2*b^2*c*d^2*abs(b) + 3*sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d
))^10*a^3*b*d^3*abs(b))/((b^4*c^2 - 2*a*b^3*c*d + a^2*b^2*d^2 - 2*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x
 + a)*b*d - a*b*d))^2*b^2*c - 2*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a*b*d + (sqr
t(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^4)^3*c^2))/b